

Civil and Environmental Engineering and Geodetic Science

470 Hitchcock Hall 2070 Neil Avenue Columbus, OH 43210-1275

> Phone (614) 292-2771 Fax (614) 292-3780

DATE:	June 11, 2010	rax (u
TO:	John Lippold, Chair of CCAA Subcommittee A	
FROM:	Harold Walker, Civil and Environmental Engineering and Geodetic Scie	ence
RE:	Environmental Engineering Minor Semester Conversion Proposal	

The Department of Civil and Environmental Engineering and Geodetic Science has completed its revision of the semester conversion proposal for the Minor in Environmental Engineering, considering the comments of Subcommittee A. All of the comments from Subcommittee A on the first draft of the proposal were relatively minor, mainly involving correcting typographical errors or making minor clarifications. We made all of the suggested changes and re-worded a few sections for better clarity. Subcommittee A indicated the changes to the second draft of the proposal were acceptable, and made no additional comments or suggestions for revision.

Program Proposal: Environmental Engineering Minor

GENERAL PROGRAM INFORMATION

1. Identify the name of the program (current and proposed names, if different)

Minor in Environmental Engineering

2. Identify the degree title (current and proposed names, if different)

Minor in Environmental Engineering

3. Identify the academic unit(s) responsible for administrating the program

Department of Civil and Environmental Engineering and Geodetic Science

4. Specify the type of program

Minor

5. Select the appropriate semester conversion designation

Converted with minimal changes to program goals and/or curricular requirements

PROGRAM REQUIREMENTS

6. List program learning goals

- Students will learn and be able to apply the problem solving methods and procedures used in Environmental Engineering.
- Students will be knowledgeable of a wide range of topics important in environmental engineering, such as sustainability, pollution prevention, air and water quality modeling, control technologies for air, water and solid waste pollution, environmental health engineering, water and environmental chemistry, ecological engineering, and hazardous and radioactive waste management.

7. List the semester courses (department, title, credit hours) that constitute the requirements and other components of the program.

Required courses (9 semester hours)Department/UnitTitle

Department/Unit	Title	Credit Hours
Civil and Environmental Engineering and Geodetic Science	ENE2100 Analytical Methods in Environmental Engineering	3
Civil and Environmental	ENE3200 Fundamentals of Environmental	3

Engineering and Geodetic	Engineering	
Science		
Civil and Environmental	ENE3210 Unit Operations in Environmental	3
Engineering and Geodetic	Engineering	
Science		

Elective courses (´at least 6 semester h	ours)

Elective courses (al least	,	
Department/Unit	Title	Credit Hours
Civil and Environmental	ENE5180 Ecological Engineering and	3
Engineering and Geodetic	Science	
Science		
Civil and Environmental	ENE4200 Unit Operations in	1
Engineering and Geodetic	Environmental Engineering	
Science	Laboratory	
Civil and Environmental	ENE5110 Environmental	3
Engineering and Geodetic	Biotechnology	
Science		
Civil and Environmental	ENE5140 Hazardous Waste	3
Engineering and Geodetic	Management	
Science		
Civil and Environmental	ENE5170 Sustainability and Pollution	3
Engineering and Geodetic	Prevention Practices	
Science		
Civil and Environmental	CE5230 Transport Phenomenon	3
Engineering and Geodetic	-	
Science		
Civil and Environmental	ENE5200 Principles of Risk	3
Engineering and Geodetic	Assessment	
Science		
Chemical and Molecular	CHBE5771 Air Pollution	2
Biological Engineering		
Chemical and Molecular	CHBE5772 Principles of Sustainable	3
Biological Engineering	Engineering	
Earth Science	ESXXXX Geochemistry of Natural	3
	Waters	-
Earth Science	ESXXXX Hydrogeology	3
Environment and Natural	ENRXXXX Soil Science	4
Resources		
Environment and Natural	ENRXXXX Soil Chemistry	4
Resources	En (Territer 501) Chomistry	
Environment and Natural	ENR XXXX Fate of Pollutants in	3
Resources	Soils and Natural Waters	5
Food, Agricultural and	FABEXXXX Ecosystems for Waste	3
Biological Engineering	Treatment	5
Biological Englicering		

8. Append a current (quarter-based) and proposed (semester-based) curriculum advising sheet for the program, formatted to meet the unit's standards.

The current (quarter-based) advising sheet is provided in Appendix A and the proposed (semester-based) advising sheet is shown in Appendix B.

9. Provide a curriculum map that shows how, and at what level (e.g., beginning, intermediate, advanced), the program's courses facilitate students' attainment of program learning goals. A table format is recommended

Course	Learning Goal #1. Introduction to EnE Problem Solving Methods.	Learning Goal #2. Exposure to EnE Topics.	
ENE2100 Analytical Methods	Intermediate	Intermediate	
in Environmental Engineering			
ENE3200 Fundamentals of	Beginning	Beginning	
Environmental Engineering			
ENE3210 Unit Operations in	Intermediate	Intermediate	
Environmental Engineering			
ENE5180 Ecological	Advanced	Advanced	
Engineering and Science			
ENE4200 Unit Operations in	Advanced	Advanced	
Environmental Engineering			
Lab			
ENE5110 Environmental	Advanced	Advanced	
Biotechnology			
ENE5140 Hazardous Waste	Advanced	Advanced	
Management			
ENE5170 Sustainability and	Advanced	Advanced	
Pollution Prevention Practices			
CE5230 Transport	sport Advanced Interm		
Phenomenon			
ENE5200 Principles of Risk	Intermediate	Advanced	
Assessment			
CHBE5771 Air Pollution	Intermediate	Intermediate	
CHBE5772 Principles of	Advanced	Advanced	
Sustainable Engineering			
Geochemistry of Natural	Advanced	Intermediate	
Waters			
Hydrogeology	Advanced	Intermediate	
Soil Science	Beginning	Intermediate	
Soil Chemistry	Intermediate	Intermediate	
Fate of Pollutants in Soils and	Beginning	Intermediate	
Natural Waters			
Ecosystems for Waste	Intermediate	Intermediate	
Treatment			

10. Provide a rationale for proposed program changes (either significant or minimal) and a description of how the changes will benefit students and enhance program quality. Include date of last significant program revision. [Word limit: 750]

Only minor changes are being made to the Environmental Engineering minor program. The credit hours are being increased slightly, from 13.3 semester equivalent hours (20 quarter hours/1.5 = 13.3) to 15 semester hours to be consistent with the majority of classes being 3 credit hours. The courses constituting the minor generally reflect the courses within the quarter version of the program. We have added a few additional course selections as technical electives to increase the flexibility and choices of the students in the minor program, especially for those students pursing the minor from outside the College of Engineering. Also, we have renamed the 3 required courses in the minor. However, the content of these three courses is consistent with the quarter offerings.

	Number of qtr-cr-	Calculated result	Number of sem-cr-
	hrs in current	for 2/3 of current	hrs required for
	program	qtr-cr-hrs	proposed program
Total cr-hrs required for	20	13.3	15
completion of program			
Pre-requisite cr-hrs required for	0	0	0
admission to program which are			
not counted toward total hrs			
Required cr-hrs offered by the	10	6.7	9
unit			
Required cr-hrs offered outside	0	0	0
the unit			

11. Provide a table to aid the Council on Academic Affairs reviewers as they check for credit hour changes.

There is no significant change in credit hours in the semester curriculum as compared to the quarters-based curriculum.

12. Provide a rationale for a change in credit hours if the difference is more than 4 semester credit hours between the values listed in columns B and C for any row in the table above. [Word limit: 500]

The change in credit hours is less than 4 semester hours.

TRANSITION POLICY

13. Include a policy statement from the chair of the department / unit that assures those students who began their degree under quarters that the transition to semesters will not delay their graduation nor disrupt progress toward a degree. This may include a description of how individual transition advising plans will be developed and possible

use of bridge courses. It should address students in the program and students taking service courses offered by the department / unit.

"No Environmental Engineering minor student who began their program under quarters will have progress toward the completion of their minor impeded by the transition to semesters. Requirements for completing the minor beginning Summer 2012 will be those in force for Environmental Engineering minor students under semesters; but every quarter-credit-hour that would have counted toward the Environmental Engineering minor under the quarter-based curriculum will count (as 2/3 of a semester-credit-hour) toward the requirements for graduation under the semester-based Environmental Engineering minor curriculum. Additional advising support will be provided for Environmental Engineering minor students to assist in planning course schedules for the last year of quarters (2011-2012) and for at least the first year of semesters (2012-2013). If it is determined that the "normal" conditions covered by the generic Environmental Engineering minor transition worksheet would result in a particular student facing an unavoidable delay in graduation compared to quarters, due to circumstances related to the change to semesters rather than the student's failure to make satisfactory progress through the program, then a revision of specific requirements will be worked out for that student by the advising staff with approval by the Environmental Engineering Undergraduate Studies Committee."

- Carolyn Merry, Chair of Civil and Environmental Engineering and Geodetic Science

The overarching objective of our transition policy is to ensure that student progress toward completing the Environmental Engineering minor will not be impeded by the conversion process. As in all previous curriculum changes, transition issues will be anticipated and planned for as a part of the conversion process. Our transition policy is based on the following principles:

- All students who graduate under semesters, even during the first semester, will do so by meeting the requirements of the semester program.
- Each semester program requirement may be met either by taking an appropriate semester course (or sequence), or by substituting a substantially equivalent quarter course (or sequence) for the corresponding semester course (or sequence).
- Excess equivalent credit-hours resulting from such substitutions—either positive or negative—will be credited against elective requirements.

Course (or Sequence) Equivalence

The worksheet in Appendix C provides a listing of quarter-based courses and the semester program requirement they will fulfill. The worksheet will be used by each student affected by the transition in order to identify their semester course requirements. The worksheet will be used to: (1) determine the semester course requirements satisfied by quarter-based offerings taken by the student, and (2) determine the excess credit hours obtained by taking the quarter-based version of some courses. The excess credit hours will be used to adjust the required number of technical elective hours in the students program in order to ensure that the student is taking an equivalent number of credit hours in the semester curriculum.

Currently, two courses in the quarter-based curriculum of the minor (CE719 Water Quality Modeling and CE771 Nuclear Waste Management) do not currently have proposed

semester versions. In the case that these two courses are not offered in semesters, students will be allowed to count the semester-equivalent credits towards their minor technical electives, as shown in the transition worksheet.

ASSESSMENT CONVERSION

14. Summarize how the program's current quarter-based assessment practices will be modified, if necessary, to fit the semester calendar [Word limit: 150]. (*Note: For example, if there are embedded assessments in selected courses, a modified assessment plan may identify the new semester courses which will include testing student attainment of program goals.*) All undergraduate degrees and majors should have an assessment plan on file with the Office of Academic Affairs; preliminary assessment planning (item #15.b. i through iii) is encouraged for all other programs.

We do not anticipate needing to significantly modify our quarter-based assessment practices to fit the semester calendar.

15. Indicate, for an undergraduate degree program or major proposal, whether the program has a plan on file with the Office of Academic Affairs

We are not required to have a plan on file for a minor program. Our assessment plan consists of the following elements:

i. Program learning goals

- Students will learn and be able to apply the problem solving methods and procedures used in Environmental Engineering.
- Students will be knowledgeable of a wide range of topics important in environmental engineering, such as sustainability, pollution prevention, air and water quality modeling, control technologies for air, water and solid waste pollution, environmental health engineering, water and environmental chemistry, ecological engineering, and hazardous and radioactive waste management.

ii. The means the program uses or will use to evaluate how well students are attaining program goals. For some examples, please refer to the following list of Means to Evaluate Achievement of program Goals (page 6 of template).

We use the following means to evaluate how well students are attaining the program goals:

- The undergraduate studies committee evaluates and updates the curriculum on a yearly basis.
- Course questionnaires to assess student perceptions of outcomes achievement. We have developed questionnaires to elicit student impressions of how courses relate to program outcomes. We are pretesting these questionnaires in selected courses with

the intention to move to administering the questionnaires in all undergraduate courses.

• Student Evaluation of Instruction (SEI): University-wide SEIs are administered in all courses.

iii. How the program uses or will use the evaluation data to make evidence-based improvements to the program periodically. For some examples, please refer to the following list of Uses of Assessment Data (page 7 of template).

We will utilize the assessment data to modify or update the curriculum requirements, as well as to make recommendations with respect to updating specific course content.

iv. Projected quarter by which the program will submit a full assessment plan using the survey form, to be submitted no later than Summer 2012.

We are not required to submit an assessment report for an undergraduate minor.

Appendix A Current (quarters-based) Advising Sheet

UNDERGRADUATE MINOR IN ENVIRONMENTAL ENGINEERING

offered by the

ABET-Accredited Program in Environmental Engineering Department of Civil and Environmental Engineering and Geodetic Science

Introduction

An undergraduate Minor in Environmental Engineering is offered by the ABET-Accredited Program in Environmental Engineering within the Department of Civil and Environmental Engineering and Geodetic Science. At least 20 hours must be taken; three courses totaling 10 hours are required, and at least 10 hours are to be selected from a list of approved elective courses.

Rationale

Environmental pollution is pervasive. Graduates from many undergraduate programs at OSU will encounter environmental engineering-related pollution problems in their job setting. Most likely are graduates from chemistry, ecology, environmental science, geology, microbiology, physics, statistics, and zoology, in addition to other engineering departments/programs. The Minor in Environmental Engineering introduces students in those fields to the problem-solving methods and procedures used in environmental engineering. A wide range of topics are addressed, e.g., sustainability, pollution prevention, air and water quality modeling, control technologies for air, water, and solid waste pollution, environmental health engineering, water and environmental chemistry, ecological engineering, and hazardous and radioactive waste management. Students can select from elective courses most appropriate to their major field.

Purpose

The purpose of the Minor is to allow students from a wide range of undergraduate majors to obtain an introductory background in sustainability, pollution prevention, environmental modeling, and pollution control technologies most appropriate to their major field.

Benefits for Students

By taking the Minor in Environmental Engineering, students should add considerably to their major program skills, and become more valuable to their future employer. Science majors will gain an understanding of engineering problem-solving methods and procedures, as well as standard pollution control technologies. Other engineering majors will become more aware of the environmental effects of technologies in their major field, and how to reduce these effects.

Curriculum Requirements

Detailed information on required and elective courses is provided in the attached Table. A total of at least 20 hours must be taken to fulfill the Minor in Environmental Engineering. Three courses are required for a total of 10 credit hours, with the remaining 10 hours or more to be selected from a list of elective courses. The three required courses cover such fundamental topics as sustainability, pollution prevention, environmental and occupational health engineering, air pollution modeling and control, water quality modeling, noise pollution, radiological health engineering, hazardous waste engineering, water treatment, wastewater treatment, and water chemistry. Elective courses allow expansion on all of these topics, as well as introducing ecological engineering, solid waste management, and other specialized areas of environmental engineering.

CURRICULUM FOR THE UNDERGRADUATE MINOR IN ENVIRONMENTAL ENGINEERING offered by the ABET-Accredited Program in Environmental Engineering Department of Civil and Environmental Engineering and Geodetic Science

Undergraduate students not enrolled in the ABET-accredited program in environmental engineering who wish to earn a Minor in Environmental Engineering must take **at least 20 hours** from the courses listed below.

Course Number		Credit Hours	Prerequisites	Quarter Offered
	Introduction to Environmental	3	Chem 122 or 125 and Math 152	SP
CE 511	Engineering			
CE 520	Design of Treatment Facilities	4	Chem 122 or 125	SP
	Analysis of Natural and Polluted	3		
CE 610	Waters		Chem 122 or 125 and Math 152	AU

REQUIRED COURSES (10 hours):***

ELECTIVE COURSES (at least 10 hours)***

Course	`````````````````````````````````	Credit	Prerequisites	Quarter
No.	Title	Hours	-	Offered
			Jr. standing with at least one course in	
CE 618	Ecological Engineering and Science	4	one of the following subject areas:	
			biology, ecology, engineering, or	WI
			geology.	
CE 620	Treatment Plant Design Laboratory	2	CE 610; prereq: CE 520	WI
	Biological Processes for Used Water	4	CE 520 or equiv.	
CE 711	Treatment			WI
CE 714	Hazardous Waste Management	3	CE 520	SP(odd yrs)
	Municipal and Industrial	4		
CE 717	Solid Waste Management		Prereq or concur: CE 520	SP
		3	CE 520 or equiv with written	
CE 719	Water Quality Modeling		permission of instructor	AU (even yrs)
		3	Nuclr En 505 or Nuclr En 606 or	
CE 771	Radioactive Waste Management		permission of instructor	AU
ChBE	Air Pollution	3	Senior standing in engineering or	WI
771			permission of the instructor	
ChBE	Principles of Sustainable Engineering	3	Senior standing in engineering or	SP
772	· · · · · · · · · · · · · · · · · · ·		permission of the instructor	

***Because CE520 is required in the civil engineering program, students in that program must take an additional 4 credit hours of the listed Elective Courses to fulfill the Minor

Appendix B Proposed (semester-based) Advising Sheet

UNDERGRADUATE MINOR IN ENVIRONMENTAL ENGINEERING

offered by the

ABET-Accredited Program in Environmental Engineering Department of Civil and Environmental Engineering and Geodetic Science

Introduction

An undergraduate Minor in Environmental Engineering is offered by the ABET-Accredited Program in Environmental Engineering within the Department of Civil and Environmental Engineering and Geodetic Science. At least 15 semester hours must be taken; three courses totaling 9 hours are required, and at least 6 hours are to be selected from a list of approved elective courses.

Rationale

Environmental pollution is pervasive. Graduates from many undergraduate programs at OSU will encounter environmental engineering-related pollution problems in their job setting. Most likely are graduates from chemistry, ecology, environmental science, geology, microbiology, physics, statistics, and zoology, in addition to other engineering departments/programs. The Minor in Environmental Engineering introduces students in those fields to the problem-solving methods and procedures used in environmental engineering. A wide range of topics are addressed, e.g., sustainability, pollution prevention, air and water quality modeling, control technologies for air, water, and solid waste pollution, environmental health engineering, water and environmental chemistry, ecological engineering, and hazardous and radioactive waste management. Students can select from elective courses most appropriate to their major field.

Purpose

The purpose of the Minor is to allow students from a wide range of undergraduate majors to obtain an introductory background in sustainability, pollution prevention, environmental modeling, and pollution control technologies most appropriate to their major field.

Benefits for Students

By taking the Minor in Environmental Engineering, students should add considerably to their major program skills, and become more valuable to their future employer. Science majors will gain an understanding of engineering problem-solving methods and procedures, as well as standard pollution control technologies. Other engineering majors will become more aware of the environmental effects of technologies in their major field, and how to reduce these effects.

Curriculum Requirements

Detailed information on required and elective courses is provided in the attached Table. A total of at least 15 hours must be taken to fulfill the Minor in Environmental Engineering. Three courses are required for a total of 9 credit hours, with the remaining 6 hours or more to be selected from a list of elective courses. The three required courses cover such fundamental topics as sustainability, pollution prevention, environmental and occupational health engineering, air pollution modeling and control, water quality modeling, noise pollution, radiological health engineering, hazardous waste engineering, water treatment, wastewater treatment, and water chemistry. Elective courses allow expansion on all of these topics, as well as introducing ecological engineering, solid waste management, and other specialized areas of environmental engineering.

CURRICULUM FOR THE UNDERGRADUATE MINOR IN ENVIRONMENTAL ENGINEERING

Required courses (9 semester hours)

Course Number	Title	Credit Hours	Pre-requisites for minor students
ENE2100	Analytical Methods in Environmental Engineering	3	General Chem II
ENE 3200	Fundamentals of Environmental Engineering	3	General Chem II
ENE3210	Unit Operations in Environmental Engineering	3	General Chem II

Elective courses (at least 6 semester hours)

Course	Title	Credit	Pre-requisites for
Number		Hours	minor students
ENE5180	Ecological Engineering and Science	3	Rank 3 or higher and
			1 course in one of the
			following: biology,
			ecology, engineering
			or geology
ENE4200	Unit Operations in Environmental	3	ENE 2100, ENE3210,
	Engineering Laboratory		ENE5110
ENE5110	Environmental Biotechnology	3	ENE3200
ENE5140	Hazardous Waste Management	3	ENE3210
ENE5170	Sustainability and Pollution Prevention	3	ENE3210
	Practices		
ENE5230	Transport Phenomenon	3	Differential equations,
			CE3160
ENE5200	Principles of Risk Assessment	3	
CHBE5771	Air Pollution	2	Rank 4 in engineering
CHBE5772	Principles of Sustainable Engineering	3	Rank 4 in engineering
ESXXXX	Geochemistry of Natural Waters	3	Chem 122 and Math
			152
ESXXXX	Hydrogeology	3	Chem 121 and Math
			153
ENRXXXX	Soil Science	4	Chem 101 or 121
ENRXXXX	Soil Chemistry	4	ENR300, Chem 123
ENRXXXX	Fate of Pollutants in Soils and Natural	3	2 qtrs chemistry, 1 qtr
	Waters		biology
FABEXXXX	Ecosystems for Waste Treatment	3	EEOB413, or
			ENR725, or
			FABE625, or ENE
			3210