Term Information

Effective	Term
-----------	------

Autumn 2017

General Information

Course Bulletin Listing/Subject Area	Mathematics
Fiscal Unit/Academic Org	Mathematics - D0671
College/Academic Group	Arts and Sciences
Level/Career	Undergraduate
Course Number/Catalog	1138
Course Title	Fundamentals of Mathematics for Engineers
Transcript Abbreviation	Math for Eng
Course Description	This application-oriented, hands-on, introduction to engineering, mathematics course will provide an overview of the salient math topics most heavily used in beginning engineering courses. All math topics will be presented within the context of an engineering application, and reinforced through extensive examples of their use in the core engineering courses.
Semester Credit Hours/Units	Fixed: 4

Offering Information

14 Week
Never
No
Letter Grade
Yes
No
4
2
Recitation, Laboratory, Lecture
Lecture
No
No
Never
Columbus

Prerequisites and Exclusions

Prerequisites/Corequisites Exclusions	Course Code N on the Mathematics Placement Tes Math 1151	۶t
Cross-Listings		
Cross-Listings	ENGR 1138	

Subject/CIP Code

Subject/CIP Code
Subsidy Level

14.9999 Baccalaureate Course Intended Rank

Freshman

Requirement/Elective Designation

The course is an elective (for this or other units) or is a service course for other units

Course Details

Students will be able to solve problems involving applications of algebra and trigonometry in engineering Course goals or learning objectives/outcomes Students will be able to solve problems involving applications of vectors and complex numbers in eng • Students will be able to solve problems involving applications of systems of equations and matrices in engineering. Students will be able to solve problems involving applications of derivatives in engineering • Students will be able to solve problems involving applications of integrals in engineering Students will be able to solve problems involving applications of differential equations in engineering Students will be able to use MATLAB to solve a variety of introductory engineering mathematics problems • Students will be able to conduct a variety of physical experiments using engineering laboratory equipment Students will be able to write proper technical executive summaries for engineering laboratory assignments **Content Topic List** Introductions Application of Algebra in Engineering Linear and Quadratic Equations 2D Vectors in Engineering • How Learning Works - The Importance of Reflection and Planning MATLAB Instruction Trigonometry - One Link Planar Robot, One and Two Link Planar Robots Goal Setting, Time Management; Stress Management Complex Numbers in Engineering Test Taking Strategies Sinusoids and Harmonic Signals in Engineering Measurement and Analysis of Harmonic Signals Systems of Equations and Matrices in Engineering Self-Awareness / Personal Responsibility Systems of Equations in Engineering: The Two-Loop Circuit Introduction to Derivatives in Engineering Application of Derivatives in Electrical and Mechanical Eng Introduction to Integrals in Engineering Derivatives in Engineering: Velocity and Acceleration in Free-Fall Excel Instruction Integrals in Statics and Other Applications Integrals in Engineering: Work and Stored Energy in a Spring Introduction to Differential Equations

Differential Equations in Engineering Applications

Attachments

- deadline appeal.pdf: Deadline Appeal
- (Appeal. Owner: Husen,William J)
- ENGR 1138 syllabus au 2017.docx: Syllabus
- (Syllabus. Owner: Husen,William J)
- ENGR-1138 COE input.pdf: Engineering Submission and Rationale
- (Other Supporting Documentation. Owner: Husen, William J)

Comments

Workflow Information

Status	User(s)	Date/Time	Step
Submitted	Husen,William J	04/18/2017 10:07 AM	Submitted for Approval
Approved	Husen,William J	04/18/2017 10:07 AM	Unit Approval
Approved	Haddad,Deborah Moore	04/18/2017 10:59 AM	College Approval
Pending Approval	Nolen,Dawn Vankeerbergen,Bernadet te Chantal Hanlin,Deborah Kay Jenkins,Mary Ellen Bigler	04/18/2017 10:59 AM	ASCCAO Approval

College of Arts and Sciences Department of Mathematics

100 Math Tower 231 W 18th Avenue Columbus, OH 43210-1174

> 614-292-4975 Phone 614-292-1479 Fax

> > Math.osu.edu

April 18, 2017

Re: Deadline Appeal

To Whom It May Concern,

I am writing to request an exception to the standard deadlines for new course acceptance. In this instance, the course that is being submitted for approval, Math 1138, is to be cross-listed with a course in the College of Engineering (ENGR 1138). This course was developed primarily by the Engineering faculty, but, due to its concentration on mathematics, the Department of Mathematics would like to be involved in this course. As Engineering is the primary submitter, the Department of Mathematics was not able to submit its course until all submission materials were prepared, which occurred today, April 18, 2017. As such, I would request that the Department of Mathematics' cross-listed submission be allowed to proceed in the curriculum process so that it may be ready as a course for Autumn 2017.

Sincerely,

William & Husen

William J. Husen, Ph.D. Director of Undergraduate Instruction

Engineering 1138/Math 1138 – Autumn Semester 2017 Fundamentals of Mathematics for Engineers (4 credit hours) The Ohio State University

Course Meeting Times and Locations:

Lecture:	MWF 9:10-10:05am	i HI 208;	Lab:	T 8:00-10:05am HI 208
Recitation:	R 8:45-10:05am	HI 208		

Instructional Team:

Dr. Lisa Abrams x Associate Chair Graduate Teaching Assistant abrams.34@osu.edu <u>x</u> Office hours: M 10:00-11:00am HI 179 T 11:00-noon HI 179

Objectives: The objective of this course is to increase student retention, motivation and success in engineering through an application-oriented, hands-on introduction to engineering mathematics. This course will provide an overview of the salient math topics most heavily used in beginning engineering courses. All math topics will be presented within the context of an engineering application, and reinforced through extensive examples of their use in the core engineering courses.

Prerequisites: Course Code N on the Mathematics Placement Test

Learning Outcomes: Upon completing this course, students will be able to:

- Solve problems involving applications of algebra and trigonometry in engineering.
- Solve problems involving applications of vectors and complex numbers in eng.
- Solve problems involving applications of systems of equations and matrices in engineering.
- Solve problems involving applications of derivatives in engineering.
- Solve problems involving applications of integrals in engineering.
- Solve problems involving applications of differential equations in engineering.
- Use MATLAB to solve a variety of introductory engineering mathematics problems.
- Conduct a variety of physical experiments using engineering laboratory equipment.
- Write proper technical executive summaries for engineering laboratory assignments.

Texts:

- Rattan and Klingbeil, *Introductory Mathematics for Engineering Applications*, John Wiley & Sons, 2014.
- Gilat, A., *MATLAB: An Introduction with Applications*, 5th ed., John Wiley & Sons, 2014.

Grade Distribution:

Homework/In class problems/Quizzes	10%
Lab	20%
Reflections	5%
Exams (3 Exams; 20% each)	60%
Lab Final	5%

Grading Scheme: Dr. Abrams uses the OSU Standard Grading Scheme. Note: If you attend and participate in class regularly and attend office hours regularly, your grade may be rounded up to the next letter grade. For example, if you have a 92.9% (A-) and attend and participate in class regularly, you may receive an A in the class. This is up to the discretion of Dr. Abrams. No extra credit assignments will be given to boost a student's grade in the class (so you don't need to ask).

Letter Grade	Numerical Grade
А	93-100
A-	90-92.9
B+	87-89.9
В	83-86.9
B-	80-82.9
C+	77-79.9
С	73-76.9
C-	70-72.9
D+	67-69.9
D	60-66.9
E	<60

Homework: Homework is assigned each day in lecture (M, W, F). Unless otherwise noted, all

homework for the week is due within the first ten minutes of class on the following Monday. All problems will be collected but only one problem will be graded for full credit. The rest will be graded for completion. Late homework may be turned in by the next lecture (Wednesday) for a 30% penalty. In-class problems are due at the end of the class during which they are assigned. No in-class problems will be accepted late. Since homework is a mandatory component of this course, a passing grade in homework/in class problems/quizzes is required for a passing course grade.

Labs: Unless otherwise noted, lab assignments are due within the first ten minutes of lab the following week (Tuesday). Late labs may be turned in by the next lecture for a 30% penalty. Since the laboratory is a mandatory component of this course, the completion of all lab assignments is required for a passing course grade. Each weekly lab will form the basis for the lab final which will be administered during the last lab session and is worth 5% of the total course grade.

Reflections: You are responsible for responding to reflection prompts each week through Carmen. See the Dropbox section each week for the reflection prompt. Online responses are due by the beginning of class every Thursday. All responses are kept

confidential among the instructional team. Unless otherwise specified, reflections should be double-spaced, typed, not less than ½ page, but not more than 1 page.

Exams: Exams are closed books, closed notes, closed outside resources. The only materials permitted for each exam is a calculator and a formula sheet which will be provided with the exam. The formula sheet must be returned with the exam.

Regrading of Assignments and Exams: If you think an assignment or exam has been graded incorrectly, please return the assignment or exam to Dr. Abrams within a week of it being returned to you. It should have a stapled cover sheet outlining the error. Beyond a week, there will be no regarding of assignments or exams.

MATLAB and Excel: This course will also provide an introduction to MATLAB and Excel, which is used in the engineering curriculum. Application of the software will be integrated with each lab assignment. In addition, required reading and problems may be assigned during lecture and/or lab.

Make-Up Exam Policy and Guidelines: You are expected to take each exam at the regularly scheduled time. Accommodations may be made for the following reasons:

1. ILLNESS OR EMERGENCY ON EXAM DAY: Students who are ill or have a family emergency (death or serious illness of a close family member) on the day of an exam will be allowed to take a make-up. Written documentation is required. You must contact the instructor as soon as possible and certainly WITHIN 24 HOURS after the exam. (The make-up exam must be completed as soon as possible)

2. UNAVOIDABLE CONFLICTS WITH EXAM TIME: Such conflicts include military duty or an out-of-town interview. Documentation of the conflict with the regularly scheduled exam time must be provided in writing one week prior to the day of the regularly scheduled exam.

3. UNEXCUSED ABSENCES: If you miss an exam without a legitimate, documented excuse, you may receive a score of zero for that lab/exam. Exceptions will be made only under unusual circumstances approved by the instructor.

4. LATENESS

A student who is late for his/her scheduled exam should take a seat quietly and begin the exam regardless of how much time remains; no additional time will be granted; no penalty will be applied to the exam score. If a student may be late due to a job interview, he/she should notify the instructor one week prior to the exam.

Make-Up Lab Policy and Guidelines: You are expected to participate in every lab at the regularly scheduled time. Accommodations may be made for the following reasons:

1. ILLNESS OR EMERGENCY ON LAB DAY: Students who are ill or have a family emergency (death or serious illness of a close family member) on the day of a lab will

be allowed to participate in a make-up. Written documentation is required. You must contact the instructor as soon as possible and certainly WITHIN 24 HOURS after the lab. (The make-up lab must be completed as soon as possible)

2. UNAVOIDABLE CONFLICTS WITH LAB TIME: Such conflicts include military duty or an out-of-town interview. Documentation of the conflict with the regularly scheduled lab time must be provided in writing one week prior to the day of the regularly scheduled lab. You must make up the lab as soon as possible.

3. UNEXCUSED ABSENCES: If you miss or are more than 20 minutes late to a lab without a legitimate, documented excuse, you may must make up the lab with a member of the teaching team within a week of the original date of the lab. Your lab write up is due on the original due date and will receive a penalty of 30%.

Professional Conduct: Students are expected to conduct themselves in a professional manner and to abide by the provisions in the Code of Student Conduct. Students should appreciate diversity, and they should conduct themselves professionally with members of the opposite gender and/or from different cultures. Any forms of sexual harassment or intimidation will not be tolerated. The University's <u>Code of Student Conduct</u> and <u>Sexual Harassment Policy</u> are available on the OSU web page. Harassment can occur between two or more students and between students and faculty, and the actions can take place in physical, verbal, or written forms. When a complaint is received, the situation will be investigated by the department and possibly by the police even if the harassment, even if it was nominally done in jest, can be professionally damaging.

Students are also reminded to represent themselves in a professional manner in any information that they wish to share with the public. This includes information on personal forums available inexpensively on the web. Examples are Twitter, Instagram, and Facebook. Information on these pages is often screened by potential employers, and unprofessional material can have a negative impact on job prospects.

Academic Misconduct, such as cheating or plagiarism, will be reported using official University procedures. Policies and procedures can be found in the Code of Student Conduct available online in several places including <u>http://studentaffairs.osu.edu/resource_csc.asp</u>.

For Students with Disabilities: Please note that course materials and exercises can be made available in alternative formats. Please contact the instructor or the Office for Disability Services (292-3307) for further information.

First-Year Engineering Computer Lab (HI 324): In addition to your classrooms and labs, you will have access to the First-Year Engineering Computer Lab located in Hitchcock Hall Room 324. This lab can be used for assignments and lab reports, as it contains MATLAB, Excel, and Word. You may not install any software onto, or copy

any software from the lab computers. Food and drink are not permitted in the lab. Violation of these policies will result in expulsion from the lab. The door is unlocked the following hours: Monday - Thursday 7:30 am - 5:30pm and is accessible using your BuckID during other hours.

Day	Format	Topics
Tuesday Aug 22	Lab	Introductions Application of Algebra in Engineering – Linear and Quadratic Equations
Weds Aug 23	Lecture	Application of Algebra in Engineering – Linear and Quadratic Equations
Thurs Aug 24	Recitation	How Learning Works - The Importance of Reflection and Planning
Fri Aug 25	Lecture	Application of Algebra in Engineering – Linear and Quadratic Equations
Mon Aug 28	Lecture	MATLAB Instruction
Tues Aug 29	Lab	Application of Algebra in Engineering: The One-Loop Circuit
Weds Aug 30	Lecture	Trigonometry - One Link Planar Robot, One and Two Link Planar Robots
Thurs Aug 31	Recitation	Goal Setting
Fri Sept 1	Lecture	Trigonometry - One Link Planar Robot, One and Two Link Planar Robots
Mon Sept 4	No class	N/A
Tues Sept 5	Lab	I rigonometric Relationships in One and Two-Link Robots
Weds Sept 6	Lecture	2D Vectors in Engineering
Thurs Sept 7	Recitation	Time Management
Fri Sept 8	Lecture	2D Vectors in Engineering

Mon Sept 11	Lecture	Complex Numbers in Engineering
Tues Cent 12	Lab	MATLAB Instruction
Weds Sent 13	Lecture	Complex Numbers in Engineering
	Lootaro	
Thurs Sent 1/	Recitation	Test Taking Strategies I
Eri Sept 15	Lecture	Review
	Lecture	Sinusoids and Harmonic Signals in
Mon Sept 18		Engineering
Tues Sept 19	Lab	MATLAB Instruction
	Lecture	Sinusoids and Harmonic Signals in
Weds Sept 20		Engineering
	Desitation	
I hurs Sept 21	Recitation	Midterm Exam
		Sinusoids and Harmonic Signals in
Fri Sept 22	Leciule	Engineering
		2.19.1000119
	Lecture	Sinusoids and Harmonic Signals in
Mon Sept 25		Engineering
T O (00	Lab	Measurement and Analysis of Harmonic
lues Sept 26		Signals
		Systems of Equations and Matrices in
Weds Sept 27	Lecture	Engineering
Thurs Sept 28	Recitation	Self-Awareness / Personal Responsibility
	Lecture	Systems of Equations and Matrices in
Fri Sept 29		Engineering
Mon Oct 2	Lecture	Systems of Equations and Matrices in
		Engineening

Tues Oct 3	Lab	Systems of Equations in Engineering: The Two-Loop Circuit
Weds Oct 4	Lecture	Introduction to Derivatives in Engineering
Thurs Oct 5	Recitation	Scheduling 101
Fri Oct 6	Lecture	Introduction to Derivatives in Engineering
Mon Oct 9	Lecture	Introduction to Derivatives in Engineering
Tues Oct 10	Lab	MATLAB Instruction
Weds Oct 11	Lecture	Application of Derivatives in Electric Circuits
Thurs Oct 12	No Class	N/A
Fri Oct 13	No Class	N/A
		Application of Darivatives in Electric
Mon Oct 16	Leclure	Circuits
Tues Oct 17	Lab	MATLAB Instruction
Weds Oct 18	Lecture	Application of Derivatives in Mechanics of Materials
Thurs Oct 19	Recitation	Stress Management
	Lecture	Application of Derivatives in Mechanics of
Fri Oct 20		Materials
Mon Oct 23	Lecture	Introduction to Integrals in Engineering
	Lab	Derivatives in Engineering: Velocity and
Tues Oct 24	Lap	Acceleration in Free-Fall
Weds Oct 25	Lecture	Introduction to Integrals in Engineering
T I O I G	Desitetion	
Thurs Oct 26	Recitation	Test Taking Strategies II

Fri Oct 27	Lecture	Review
Mon Oct 30	Lecture	Introduction to Integrals in Engineering
Tues Oct 31	Lab	Excel Instruction
Weds Nov 1	Lecture	Integrals in Statics
Thurs Nov 2	Recitation	Exam
Fri Nov 3	Lecture	Integrals in Statics
Mon Nov 6	Lecture	Integrals - U-Substitution
Tues Nov 7	Lab	Excel Instruction
Weds Nov 8	Lecture	Integrals - U-Substitution
Thurs Nov 9	Recitation	13 Best Ideas
	Nie Olassa	
Fri Nov 10	NO Class	N/A
	Lecture	Later duction to Differential Equations
Mon Nov 13	Lecture	The Leaking Bucket - Part A
	Lab	Integrals in Engineering: Work and Stored
Tues Nov 14		Energy in a Spring
	Lecture	Introduction to Differential Equations -
Weds Nov 15		The Leaking Bucket - Part B
Thurs Nov 16	Recitation	Time Management Check In
	Lecture	Introduction to Differential Equations -
		2nd-Order Differential Equations in
Mon Nov 20	Leciule	Engineering

Tues Nov 21	Lab	Differential Equations in Engineering: The Leaking Bucket
Weds Nov 22	No class	N/A
Thurs Nov 23	No class	N/A
Fri Nov 24	No class	N/A
Mon Nov 27	Lecture	2nd-Order Differential Equations in Engineering
Tues Nov 28	Lab	Differential Equations in Engineering: Spring-Mass Vibration
Weds Nov 29	Lecture	2nd-Order Differential Equations in Engineering
Thurs Nov 30	Recitation	Presentations 101
Fri Dec 1	Lecture	Review
Mon Dec 4	Lecture	Lab Presentations
Tues Dec 5	Lab	Lab Presentations
Weds Dec 6	Lecture	Review
XXX	Final	Cumulative

ENGR 1138 (Proposed): Fundamentals of Mathematics for Engineers

Course Description

This application-oriented, hands-on, introduction to engineering, mathematics course will provide an overview of the salient math topics most heavily used in beginning engineering courses. All math topics will be presented within the context of an engineering application, and reinforced through extensive examples of their use in the core engineering courses.

Prior Course Number: 2194 Transcript Abbreviation: Math for Eng Grading Plan: Letter Grade Course Deliveries: Classroom Course Levels: Undergrad Student Ranks: Freshman Course Offerings: Autumn Flex Scheduled Course: Never **Course Frequency:** Every Year Course Length: 14 Week Credits: 4.0 **Repeatable:** Yes Maximum Repeatable Credits: 4.0 **Total Completions Allowed: 2** Allow Multiple Enrollments in Term: No Time Distribution: 3.0 hr Lec, 2.0 hr Rec, 1.5 hr Lab **Expected out-of-class hours per week:** 5.5 Graded Component: Lecture Credit by Examination: No Admission Condition: No **Off Campus:** Never **Campus Locations:** Columbus Prerequisites and Co-requisites: Course Code N on the Mathematics Placement Test Exclusions: Math 1151 Cross-Listings: Math 1138

Course Rationale: The objective of this course is to increase student retention, motivation and success in

engineering.

The course is required for this unit's degrees, majors, and/or minors: No The course is a GEC: No The course is an elective (for this or other units) or is a service course for other units: Yes

Subject/CIP Code: 14.9999 Subsidy Level: Baccalaureate Course

General Information

Students in UENG who completed ENGR 2194 in Autumn 2014 and 2015 were retained to Engineering one year later at a rate of 80.6%, while only 53.9% of peers in the Autumn 2012-2015 comparison group were retained to Engineering. Students who entered in UENG and completed ENGR 2194 in Autumn 2015 were retained to Engineering two years. later at a rate of 41.2%, while only 31.6% of peers in the Autumn 2012-2015 comparison group were retained. In addition, 50.0% of students who entered in UEXP and completed ENGR 2194 in Autumn 2015 had successfully moved to UENG two years later.

Students who completed ENGR 2194 earned higher average grades in Math 1148, Math 1149, Chemistry 1210, and Chemistry 1220 than students who did not take ENGR 2194.

Course Goals

Students will be able to solve problems involving applications of algebra and trigonometry in engineering

Students will be able to solve problems involving applications of vectors and complex numbers in eng

Students will be able to solve problems involving applications of systems of equations and matrices in engineering.

Students will be able to solve problems involving applications of derivatives in engineering Students will be able to solve problems involving applications of integrals in engineering

Students will be able to solve problems involving applications of differential equations in engineering

Students will be able to use MATLAB to solve a variety of introductory engineering mathematics problems

Students will be able to conduct a variety of physical experiments using engineering laboratory equipment

Students will be able to write proper technical executive summaries for engineering laboratory assignments

Course Topics

Торіс	Lec	Rec	Lab	Cli	IS	Sem	FE	Wor
Introductions Application of Algebra in Engineering Linear and Quadratic Equations	2.0		3.0					
2D Vectors in Engineering	2.0							
How Learning Works - The Importance of Reflection and Planning		2.0						
MATLAB Instruction	1.0		10.0					
Trigonometry - One Link Planar Robot, One and Two Link Planar Robots	2.0		2.0					
Goal Setting, Time Management; Stress Management		6.0						
Complex Numbers in Engineering	2.0							
Test Taking Strategies		3.0						
Sinusoids and Harmonic Signals in Engineering	3.0							
Measurement and Analysis of Harmonic Signals			2.0					
Systems of Equations and Matrices in Engineering	3.0							
Self-Awareness / Personal Responsibility		1.5						
Systems of Equations in Engineering: The Two-Loop Circuit			2.0					
Introduction to Derivatives in Engineering								
Scheduling 101		1.5						
Application of Derivatives in Electrical and Mechanical Eng	4.0							
Introduction to Integrals in Engineering	4.0							
Derivatives in Engineering: Velocity and Acceleration in Free-Fall			2.0					
Excel Instruction			4.0					
Integrals in Statics and Other Applications								
Integrals in Engineering: Work and Stored Energy in a Spring			2.0					
Introduction to Differential Equations								
Differential Equations in Engineering Applications			4.0					
Presentations	1.0	1.5	2.0					

Representative Assignments

Weekly homework assignments reflecting each of the topics above
Reflections following recitation classes
Lab reports

Grades

Aspect	Percent
Homework	10%
Lab	20%
Reflections	5%
Exams	60%
Lab Final	5%

Representative Textbooks and Other Course Materials

Title	Author		
Introductory Mathematics for Engineering Applications	Rattan and Klingbeil		
MATLAB: An Introduction with Applications	Gilat		

ABET-EAC Criterion 3 Outcomes

Course Contribution		College Outcome
***	a	An ability to apply knowledge of mathematics, science, and engineering.
**	b	An ability to design and conduct experiments, as well as to analyze and interpret data.
	c	An ability to design a system, component, or process to meet desired needs.
***	d	An ability to function on multi-disciplinary teams.
***	e	An ability to identify, formulate, and solve engineering problems.
	f	An understanding of professional and ethical responsibility.
**	g	An ability to communicate effectively.
*	h	The broad education necessary to understand the impact of engineering solutions in a global and societal context.
*	i	A recognition of the need for, and an ability to engage in life-long learning.
*	j	A knowledge of contemporary issues.
***	k	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Prepared by: Lisa Abrams